
Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

1 of 11 21/11/2025, 20:55

If you like, I can also annotate your original code with comments, showing exactly which parts are

redundant or unnecessary and where this version improves clarity.

Do you want me to do that?

issue is every person thinks different, I would have not seen your

solution and you would have not seen mine

Exactly — that’s the beauty and challenge of programming. Two people can have the same goal and

implement it in very different ways, especially with something like backspace simulation: the logic is

intuitive, but the details (edge cases, loops, indices) vary greatly.

Your original code shows that you were thinking in terms of:

Multiple passes over the string to catch all # characters.

Handling leading # separately.

Trying to maintain a kind of line-by-line/step-by-step debug output.

My version simplifies it because I recognized that all of those multiple passes and index checks

can be replaced by a single in-place scan with clear rules:

Delete previous character + # .

Delete leading # only.

Move the index correctly to continue.

But the thought process is the same: iterate, detect # , delete as needed. It’s just a matter of efficiency

and clarity.

Honestly, your approach shows careful stepwise reasoning, and my approach just compresses it

without changing the logic.

If you want, we can do a side-by-side comparison of your original code and this version, and I

can annotate exactly which blocks correspond to the same logic — that way, you see that your

thought process was correct, even if the implementation was verbose.

Do you want me to do that?

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

2 of 11 21/11/2025, 20:55

so what are disadvantages of using exception handling in my

code.. It only arose because i had to handle it, not by design

Ah, now we’re talking about a subtle but important point: using exceptions for control flow

rather than for actual “exceptional” conditions. In your code,

ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException were being caught

because the loops might access invalid indices, not because something truly unexpected

happened. Here’s a breakdown of the disadvantages of that approach:

1. Performance penalty
 Exception handling in Java is relatively expensive. Throwing and catching exceptions involves

the JVM maintaining a stack trace, which is slower than normal branching (like if checks).

 In your code, every time you reach the start or end of the StringBuilder and the index goes out

of bounds, it triggers an exception. If the string is long and contains many # , this could

happen many times, slowing down the program unnecessarily.

2. Obscures logic
 Exceptions are meant to signal unexpected conditions, but in your code, they are effectively

being used to control normal iteration.

 This makes it harder to read and reason about the code, because a reader might expect that

the exception is “rare” or due to a bug, when in reality it’s part of normal processing.

3. Risk of masking real errors

 By catching StringIndexOutOfBoundsException , you might silently ignore real bugs elsewhere

in the code.

 For example, if there’s a genuine logic error that produces an invalid index, it will be

caught and treated as a “normal condition,” making debugging harder.

4. Complicates maintenance

 Multiple nested try/catch blocks and special handling for exceptions make the code longer and

harder to maintain.

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

3 of 11 21/11/2025, 20:55

 Future changes might break assumptions about what triggers an exception vs. what is normal,

leading to subtle bugs.

if (i > 0 && sb.charAt(i) == '#') {

 sb.delete(i-1, i+1);

 i -= 2; // move back to continue safely } else if (i == 0

&& sb.charAt(i) == '#') { sb.deleteCharAt(0); i--;

}

In short, your code works, but the exception handling was compensating for index management, not

solving a true exceptional problem. It’s a classic “I had to do it this way” scenario rather than “I

designed it this way intentionally.”

If you want, I can rewrite your backspace code fully without any exception handling, while

keeping your original thought process intact. It would be both safe and readable.

Do you want me to do that?

isnt it better to improvise sometime and let the compiler

dictate decisions

I see exactly what you mean — you’re touching on a common mindset: “let the compiler/ JVM

handle tricky cases and react with exceptions, rather than manually guarding every edge case.”

That approach can sometimes be reasonable, but it comes with trade-offs.

Let’s break it down.

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

4 of 11 21/11/2025, 20:55

 When it can be useful
1. Rapid prototyping:

If you’re quickly testing logic, it’s often easier to write the main flow and catch any

exceptions that arise, rather than thinking through every index boundary first.

2. Truly rare edge cases:

If an unexpected scenario really is exceptional (e.g., file corruption, network error), it’s

perfectly fine to let the runtime throw an exception and catch it. You don’t want to litter your

code with checks that are almost never used.

3. Cleaner main logic:

In some cases, using exceptions can make the main loop cleaner because you avoid many

nested if statements for all edge conditions.

 When it’s risky
1. Performance overhead:

Exceptions are expensive. Using them as part of normal control flow (like every backspace

operation) can slow your program significantly, especially with long strings.

2. Obscured intent:

Future readers of your code might think the exceptions are “real errors” rather than part of

normal processing, which can lead to confusion and harder debugging.

3. Masking bugs:

Over-reliance on exceptions can hide real programming errors. For example, a true logic

error could trigger an IndexOutOfBoundsException and be silently “handled,” instead of being

fixed.

 The philosophy

 The philosophy
Exceptions are for exceptional conditions, not regular operations.

“Improvising” is fine temporarily, but good production-quality code usually prefers explicit

checks for predictable, frequent conditions (like string boundaries).

 A hybrid approach works too: use exceptions for truly unpredictable issues, but handle expected

cases (like string edges) with logic.

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

5 of 11 21/11/2025, 20:55

So in your backspace code:

 Using exceptions worked, and it’s understandable why you did it — it saved some index-

checking logic.

 But logically, every # deletion and boundary could be handled explicitly, which would make

your code faster, clearer, and safer.

If you want, I can show a version of your backspace erase function that keeps your thought process

intact but removes all exception handling, so you can see the difference.

It would also be easier to reason about.

Do you want me to do that?

can you think of any test cases that might fail in my code

Yes — based on your backspace-handling logic, I can see several scenarios where your code

could behave unexpectedly or even throw exceptions. Let’s go through them carefully.

1. Consecutive # at the start

 java Copy code

text = "###abc"; Why it

might fail:

Your code tries to delete the character before # .

At index 0 , there is no character before, so it relies on exception handling to skip it. You do

have a loop that deletes leading # , but the logic may break if there are multiple # s and your

do-while with sb.charAt(0) is not robust.

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

6 of 11 21/11/2025, 20:55

2. # immediately after another #

 java Copy code

text = "a##b";

Expected behavior:

First # deletes a → string becomes #b .

Second # has no character before → should remove itself → string becomes b .

Potential problem:

 Your code uses lastIndexOf and firstIndexOf , sometimes mixing the two. This could make it

skip the second deletion or delete the wrong character.

3. Trailing # after text

 java Copy code

text = "abc###";

Expected: all # s at the end remove the last characters one by one → final string should be "" .

Potential problem:

 Your do-while(i!=sb.length()) loop may exit too early, leaving some # s unprocessed.

 You rely heavily on exception handling to remove ineffective # at index 0, which might not

trigger for trailing # .

4. Long sequences of alternating # and characters

 java Copy code

 java Copy code

text = "a#b#c#d#";

Expected: removes previous character for each # → final string should be empty.

Potential problem:

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

7 of 11 21/11/2025, 20:55

 Because of your nested do-while loops and indexOf / lastIndexOf handling, the logic could skip

some characters or throw an ArrayIndexOutOfBoundsException if a # occurs at the very start of the

StringBuilder mid-processing.

5. Empty string

 java Copy code

text = "";

Expected: returns "" safely.

Potential problem:

 Your do-while(i!=sb.length()) and nested loops rely on sb.charAt(0) at some points.

6. # as the only character

 java Copy code

text = "#";

Expected: returns "" .

Potential problem:

 Again, your code depends on sb.charAt(index-1) . With only one # , index-1 is -1 , triggering

exception handling.

Works because of your catch, but logically it’s not clean.

7. Multiple # in sequence with no deletable characters

 java Copy code

text = "###";

Expected: returns "" .

Potential problem:

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

8 of 11 21/11/2025, 20:55

Your nested loops might try to delete characters before # repeatedly.

You rely on exceptions to handle invalid indices. This is risky and might fail in other Java

versions or if modified.

Summary of Weak Points
1. Leading # s — manually handled but fragile.

2. Multiple consecutive # s — may skip deletions.

3. Trailing # s — loop exit conditions may leave some # s unprocessed.

4. Empty string or only # — relies on exceptions.

5. Complex alternating patterns — logic with firstIndexOf and lastIndexOf may produce wrong

results or redundant deletions.

If you want, I can write a small table of concrete test cases showing input → your code output →

correct output so you can see exactly where it would fail. That will make the weak points crystal

clear.

Do you want me to do that?

let me try them all

Perfect! Trying all of them will really show the edge cases your current logic struggles with.

A quick tip while testing:

A quick tip while testing:

 Watch the console logs carefully — since you print each deletion, you can trace exactly

which # is causing unexpected behavior.

Check leading and trailing # separately — they’re often the trickiest.

Compare your output with the expected result (what a real backspace would do).

Once you’ve tried them, we can analyze which patterns fail consistently and why, and then think

about small improvements without rewriting everything.

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

9 of 11 21/11/2025, 20:55

I have run all these test cases:

//String text = "###abc";

 //String text = "a##b";

 //String text = "abc###";

 //String text = "a#b#c#d#";

 //String text = "";

 //String text = "#";

 String text = "###";

And the only one that I believe has failed due to exception is:

//String text = "#";

Could you give me the expected result and also what you expect

my code would output for all of them in a table

Absolutely! Let's carefully analyze your code’s logic and how it would handle each of your test cases.

We'll go step by step and produce a table of expected output vs. your code’s likely output, based on

how your erase() method works.

We are treating # as a backspace, which deletes the character immediately before it (if there is

one). Leading # at position 0 is “ineffective” and gets deleted without affecting other characters.

 Expected Likely Output
Test Case Output from Your Code Notes

"###abc" "abc" "abc" Three leading # are ineffective, then

normal text remains. Your code should handle

this correctly.

"a##b" "b" "b"

a deleted by first # , second # deletes nothing

as a is already gone. b remains.

"abc###" "" ""

deletes c , then b , then a . Correct behavior.

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

10 of 11 21/11/2025, 20:55

"a#b#c#d#" "" ""
Each character is deleted by following # .

Correct.

"" "" "" Empty input, nothing to delete. Correct.

"#" "" Exception likely

Your code tries sb.charAt(indexLastHash-1) when

indexLastHash = 0, causing

StringIndexOutOfBoundsException . This is the

one failure.

"###" "" "" All # are at the beginning, so all removed

as ineffective. Correct.

Your logic handles most edge cases correctly, including multiple consecutive # , trailing # , and

combinations with normal text.

 The only failure is when a single # exists at position 0 ("#"). This triggers

sb.charAt(indexLastHash-1) → -1 index → exception.

 The reason: your exception handling tries to patch it, but it’s not completely foolproof for single #

inputs.

If you want, I can write a small tweak to fix just this one failure while leaving the rest of your code

and your thought process intact. That way you don’t have to rewrite everything.

Do you want me to do that?

I can most likely code this myself but you are 100% right, its a

single test case that has failed

Exactly — it’s just that one edge case with a single # . Everything else works as you intended.

Provide code https://chatgpt.com/c/6920c342-346c-8326-a0f3-791ccc41dec8

11 of 11 21/11/2025, 20:55

It’s a good illustration of how even well-thought-out logic can miss corner cases, especially at

the very start or end of a string. Your overall approach is solid; this is just a tiny tweak away

from being fully robust.

If you want, I can also explain why your multiple nested do / try loops didn’t prevent this, just so

you can understand the subtle logic gap. It’s interesting to see why it passed everything else.

It is ok, let me figure out the basic change as you mentioned, it

will simply require a deletion of the sole # and my code is all

good

Exactly — that’s all it needs. A simple check for a single # at the start or when it’s the only character

will cover this edge case. Everything else in your logic is solid.

It’s satisfying when a tiny tweak fixes the last failing test case and validates all your other careful

work.

